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Abstract 

Background: The ecology of many mosquitoes, including Anopheles farauti, the dominant malaria vector in the 
southwest Pacific including the Solomon Islands, remains inadequately understood. Studies to map fine scale vector 
distributions are biased when trapping techniques use lures that will influence the natural movements of mosquitoes 
by attracting them to traps. However, passive collection methods allow the detailed natural distributions of vector 
populations by sex and physiological states to be revealed.

Methods: The barrier screen, a passive mosquito collection method along with human landing catches were used to 
record An. farauti distributions over time and space in two Solomon Island villages from May 2016 to July 2017.

Results: Temporal and spatial distributions of over 15,000 mosquitoes, including males as well as unfed, host seeking, 
blood-fed, non-blood fed and gravid females were mapped. These spatial and temporal patterns varied by species, 
sex and physiological state. Sugar-fed An. farauti were mostly collected between 10–20 m away from houses with 
peak activity from 18:00 to 19:00 h. Male An. farauti were mostly collected greater than 20 m from houses with peak 
activity from 19:00 to 20:00 h.

Conclusions: Anopheles farauti subpopulations, as defined by physiological state and sex, are heterogeneously 
distributed in Solomon Island villages. Understanding the basis for these observed heterogeneities will lead to more 
accurate surveillance of mosquitoes and will enable spatial targeting of interventions for greater efficiency and effec-
tiveness of vector control.
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Background
Mosquito ecology remains inadequately understood for 
many species [1, 2], including Anopheles farauti, a domi-
nant malaria vector in the southwest Pacific from western 
Indonesia through Papua New Guinea and the Solomon 
Islands to Vanuatu [3, 4]. Although there are behavioural 
differences among species [5], in general, mosquitoes 
fly to satisfy five basic behaviours: to blood feed, to find 
favourable resting sites, to lay eggs, to mate and to sugar 
feed [2]. Much is known about the blood-feeding of An. 
farauti [6, 7] but less is known about resting [6, 8–10] 

and oviposition behaviours [11–13]. These behaviours 
directly impact the efficacy of the three WHO recom-
mended interventions of insecticide-treated nets (ITNs), 
indoor residual spray (IRS) and larval source manage-
ment (LSM) [14]. Further, very little is known about two 
behaviours of An. farauti, sugar-feeding and mating, both 
of which are targets of novel vector control tools. There 
are no published data on where or on what plants An. far-
auti prefer to take sugar meals and An. farauti swarms 
have also not yet been observed.

There are significant variations in activity patterns 
among species and these patterns are changing as mos-
quitoes respond differently to selection pressures induced 
by vector control and changing environmental conditions 
[15, 16]. Prior to IRS with DDT, An. farauti sought blood 
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meals throughout the night, both indoors and outdoors. 
After the malaria elimination campaigns using IRS with 
DDT, a shift to earlier and more outdoor blood-feeding 
occurred. This behavioural shift was reinforced by the 
widespread deployment of ITNs to the point where 76% 
of biting now occurs outdoors before 21:00 h [3].

Knowledge of mosquito behaviours has been domi-
nated by the use of traps with lures (including the use 
of humans and animals as baits) to define densities and 
distributions of species. Data generated in most traps 
provide useful “snapshots” on numbers of mosquitoes 
in specific physiological states, but these numbers may 
be biased by the lures used with traps. Thus, such data 
provides only limited insights into mosquitoes transition-
ing from one state to the next or where these behaviours 
take place (as lures induce mosquitoes to move towards 
the traps) [17]. There is a need to track mosquito behav-
iours without influencing the behaviours themselves 
to understand how best to monitor and control vector 
populations.

The barrier screen is an insecticide-free neutral (no bait 
or lure) net “trap” that intercepts mosquitoes as they fly 
in pursuit of blood meals, resting and oviposition sites, 
mating sites or sugar sources [18, 19]. Mosquitoes when 
flying between blood-feeding, oviposition, mating, sugar-
feeding and resting sites temporarily stop to rest when 
encountering a barrier screen, from which they can be 

collected. This approach is advantageous to studies of 
mosquito distributions in that it does not alter the natu-
ral locations of mosquitoes with lures and it samples both 
male and female mosquitoes of all physiological states. 
The natural outdoor temporal and spatial distributions of 
An. farauti subpopulations by sex and physiological sta-
tus were mapped within villages in the Solomon Islands 
using barrier screens.

Methods
Study sites
The study was conducted in Jack Harbour village on 
Kolombangara Island in Western Province (8.059°S, 
157.196°E) and Haleta village on Ngella Sule Island in 
Central Province (9.098°S, 160.115°E) in the Solomon 
Islands (Fig.  1) [20]. Both coastal villages are on moun-
tainous, rain-forested islands; with a mean daily tempera-
ture of 27 °C and annual rainfall between 3000–5000 mm 
[21]. Haleta had a population of 366 in 70 households 
and Jack Harbour had a population of 151 in 38 house-
holds. Central Province had an annual parasite incidence 
(API) of 280 malaria cases per 1000 persons while West-
ern Province had an API rate of 30 malaria cases per 1000 
persons in 2016 [22].

Anopheles farauti, the dominant malaria vector in the 
Solomon Islands, is the only human-biting anopheline 

Fig. 1 Map of Solomon Islands and showing Haleta village on Nggela Sule Island in Central Province and Jack Harbour village on Kolombangara 
Island in Western Province
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found in both villages with a mean of 14.8 bites per person 
per half-night (b/p/h-n) in Haleta village for 2011–2014 
[3] and 26.3 b/p/h-n in Jack Harbour for 2014–2016 [20].

Sampling adult mosquitoes
During each sampling period, mosquitoes were sampled 
simultaneously over 4–6 sequential nights from 18:00 to 
00:00 h using both barrier screens (BS) and human landing 
catch (HLC) in May, August and November 2016 and Feb-
ruary 2017. In addition, Haleta was sampled in July 2017.

Barrier screens were constructed from 20 m long black 
high-density polyethylene shade cloth of 70 % shading 
(160 g/m2;  Coolaroo® Gale Pacific Ltd, Melbourne, Aus-
tralia) [18, 19]. Mosquitoes resting on barrier screens 
were collected by mouth aspiration for 15 min every hour 
by collectors to whom insect repellent had been applied. 
For each mosquito, the time of collection by hour; the 
side of the barrier screen and resting height above the 
ground [using 3 broad categories of low (0–0.6  m), 
medium (0.6–1.2 m) and high (1.2–1. m)] were recorded. 
On any given night, 8 barrier screens were deployed 
across a village, and the distance of barrier screens to 
the nearest house and primary larval habitat measured. 
Barrier screens were relocated to sample a wide range of 
habitats/locations. Host-seeking females were also cap-
tured by HLC outdoors at 10 sites distributed throughout 
each village. The same locations were used for all HLC 
sampling efforts during all sampling periods as described 
previously [3, 20].

Captured anophelines were held by hour and collec-
tion station until identified to species by morphology [8], 
and categorised to sex (male or female) and physiological 
state at the field sites. Unfed, blood-fed and gravid mos-
quitoes were identified according to Detinova [23]; mos-
quitoes with a distended abdomen with a clear, likely 
sugar meal will hereafter be referred to as sugar-fed.

Weather measurements
Weather Meters (Kestrel 4500) with wind vanes recorded 
the temperature, humidity and wind speed and direction 
at ground level and at 1.8 m above the ground nightly 
during collections.

Statistical analysis
Generalised linear models (GLMs) with Gaussian distri-
bution were used to analyse differences in (i) the temporal 
density of mosquitoes compared between physiological 
states; (ii) the distance from nearest house and physiolog-
ical state; and (iii) the resting density of mosquitoes with 
average temperature, humidity and wind speed during 
collections. The significance of the interaction was ana-
lysed using a Chi-square test (ANOVA) that compared 
the fit of two nested Poisson GLM models. The effect of 

barrier screen height on resting female mosquito densi-
ties was analysed with a Generalized Linear Mixed Model 
(GLMM) with a negative binomial distribution and a ran-
dom factor for the date (glmer.nb; package = lme4). Sam-
ples without any resting mosquitoes were removed from 
the analysis. Incorporating date as the random factor into 
the GLMM model accounted for natural fluctuations in 
mosquito densities observed while increasing the power 
of the model. This analysis was conducted using R statis-
tical software (ver.3.1.2).

Geospatial analysis
Vector foci (areas with higher than mean densities) were 
determined using FleXScan (v3.1.2), a spatial Poisson dis-
tribution model to identify aggregated clusters by identi-
fying spatial windows with greater ratios of observed to 
expected cases (relative risk). A single cluster detection 
was based on a spatial matrix defined using triangular 
irregular networks created based on Delaunay Triangula-
tion, with Euclidian distance, limited to 10 stations with 
P < 0.01. The FleXScan identified foci were then mapped 
in ArcMap 10.1 with a 10 m buffer.

Results
A total of 3411 mosquitoes resting on barrier screens 
were collected: 2345 from Jack Harbour during 21 half 
nights and 1066 from Haleta during 28 half nights of 
collections. The positions of barrier screen positions in 
Haleta and Jack Harbour are shown in Fig. 2.

Of these, 2292 were An. farauti and 1283 were culi-
cines. Ninety-two percent of the An. farauti collected 
were females (n = 2121) and 87% of the culicines were 
females (n = 1119). Culicines were composed of a mix 
of species in the genera Culex (Cx. sitiens, Cx. quinque-
fasciatus) and Verallina spp. There were also occasional 
rare collections of Aedes (Ae. scutellaris) and Armigeres 
spp. on the barrier screens. Of the female An. farauti, 
67% were unfed (n = 1421), 23% blood-fed (n = 484), 8% 
sugar-fed (n = 173) and 2% gravid (n = 43). Mean number 
of resting female An. farauti per barrier screen per half-
night (r/bs/h-n) during sampling periods ranged from 
0.9 r/bs/h-n in the dry season to 11.0 r/bs/h-n in the wet 
season.

A total of 12,733 female, blood-seeking An. farauti 
were collected by HLC: 7296 from Jack Harbour (14 half 
nights) and 5437 from Haleta (20 half nights) villages 
over 34 half nights. Mean number of host-seeking female 
An. farauti per sampling period ranged from 1 b/p/h-n to 
13 b/p/h-n).

Mosquito distributions on barrier screens
The hourly numbers of mosquitoes collected on barrier 
screens varied by physiological status (χ2 = −205.37, 
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df  = −36, P ≤ 0.0001). Numbers of unfed female and 
male An. farauti resting on the barrier screens peaked 
at 19:00–20:00 h, decreasing to 00:00 h when sampling 

ceased (Fig.  3). The number of blood-fed female An. 
farauti on barrier screens maintained a longer peak 
(from 19:00–21:00  h) and had a more gradual decline 

Fig. 2 Village maps of Jack Harbour (a) and Haleta (b) showing all locations where barrier screens (red) and human landing catch stations (green) 
were located, as well as houses (circles) and primary larval habitat (blue)

Fig. 3 Densities of An. farauti on barrier screens by time. a Unfed females. b Blood-fed females. c Sugar-fed females. d Males
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in numbers to 00:00  h. Sugar-fed female An. far-
auti were collected earlier in the evening, peaking at 
18:00–19:00 h. Blood-seeking An. farauti females from 
HLC had a similar temporal patterns to resting unfed 
females on the barrier screens as also recorded in pre-
vious studies in the same villages [3].

There was a significant inverse association between 
the height above the ground where mosquitoes 
were collected and the mean numbers collected 
(β = −0.3596, SE = 0.1331, P  = 0.007): 57% of An. far-
auti females were collected within 60 cm of the ground 
with a mean of 3.8 r/bs/h-n. In contrast, the mean rest-
ing density between 60 and 120 cm above the ground 

was 2.3 r/bs/h-n. Above 120 cm, only 1.2 r/bs/h-n An. 
farauti were collected.

Geospatial resting locations
Distance from house
There was a significant interaction between the dis-
tance to the house and the physiological state of resting 
female An. farauti (χ2 = −136.82, df  = −4, P ≤ 0.001). 
Unfed and blood-fed An. farauti were most commonly 
collected within 10 m of a house, while more sugar-fed 
female An. farauti were collected 11–20 m from houses 
(Fig. 4). Male An. farauti numbers were highest at dis-
tances > 20  m from houses and also most (62%) were 

Fig. 4 Densities of An. farauti on barrier screens in proximity to the closest house. a Unfed females. b Blood-fed females. c Sugar-fed females. d 
Males
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collected within 10 m of a large swamp especially evi-
dent in Haleta village.

Resting foci
Significant foci of mosquitoes by physiological states and 
species were identified within each village (Table  1). In 
Haleta and Jack Harbour villages, there was high spatial 
overlap where unfed female An. farauti and sugar-fed and 
blood-fed female An. farauti were collected (Figs.  5, 6). 
Sugar-fed An. farauti females and An. farauti males were 
also collected in close proximity, particularly evident in 
Jack Harbour. Blood-seeking An. farauti foci also tended 
to resemble patterns of unfed and blood-fed female An. 
farauti. Although there were differences between the vil-
lages, the male An. farauti foci was always smaller than 
the female foci. The populations of female culicines and 
anophelines (e.g. An. farauti) were largely segregated into 
different parts of the villages.

Weather
Temperature, humidity and wind speed strongly influ-
enced mosquito numbers on barrier screens (tempera-
ture: β= −0.4398, SE = 0.0340, P ≤ 0.001; humidity: 
β = −0.1570, SE = 0.0073, P ≤ 0.001; wind speed: 
β = −2.7890, SE = 0.1558, P ≤ 0.001) and with HLC (tem-
perature: β = −0.2922, SE = 1.8985, P ≤ 0.001; humid-
ity: β =  0.0516, SE = 0.0108, P ≤ 0.001; wind speed: 
β = −1.9914, SE = 0.2026, P ≤ 0.001). Higher average 
wind speeds were associated with lower An. farauti 
collections on barrier screens and with human land-
ing catch (Fig.  7). Collection densities above 1 female 
An. farauti per night on barrier screens never occurred 

when average wind speeds were > 0.2  m/s. Lower aver-
age humidity during mosquito sampling was associ-
ated with lower numbers of An. farauti collected on 
barrier screens. Higher densities of female An. farauti 
on barrier screens were associated with lower average 
temperatures.

Discussion
In villages, exposure to anophelines and malaria trans-
mission is unevenly distributed [24]. Previous studies 
documented heterogeneity in the distribution of biting 
An. farauti in villages in the Solomon Islands and pro-
posed that the risk of malaria was best estimated by bit-
ing rates in low-transmission villages [20]. This study 
expands our understanding of the distributions of mos-
quitoes to include other species, physiological states, sex 
and behaviours. Analogous to the temporal activity pat-
terns of An. farauti, the spatial activity patterns for An. 
farauti in the Solomon Islands also differed by physi-
ological states and sex. Whereas biting rates estimate the 
risk of malaria transmission, the distributions of other 
vectors by physiological states or behaviours may enable 
optimising control and monitoring strategies. This study 
also highlights the suitability of the barrier screen for col-
lecting non-anopheline mosquitoes.

The complexity of the environment influences the 
locations where mosquitoes were sampled, with barrier 
screens near potential blood sources (houses) intercept-
ing more unfed (potentially blood-meal seeking) and 
blood-fed An. farauti. The barrier screens were most effi-
cient at sampling unfed mosquitoes (63–67%), followed 
by blood-fed (23–36%) with only 1–2% being gravid, as 

Table 1 Spatial clusters (foci) of An. farauti and Culex within Jack Harbour and Haleta villages

Note: Foci were detected with a flexible scan statistic using FleXScan software and were significant at P < 0.05

Species Physiological state Maximum 
distance (m)

Percent of locations 
(census areas)

Observed percent of 
mosquitoes

Expected no. of 
mosquitoes

Relative 
risk (obs/
exp)

Haleta village

 An. farauti Unfed female 52 7 (2/29) 28 (107/381) 30 3.61

 An. farauti Blood-fed female 141 14 (4/29) 33 (54/165) 31 1.75

An. farauti Sugar-fed female 185 17 (5/29) 47 (28/60) 12 2.26

 An. farauti Male 0 3 (1/29) 39 (53/136) 11 4.74

 Culex spp. Female Culex 128 21 (6/29) 74 (211/287) 48 4.44

 An. farauti Blood-seeking female (HLC) 341 70 (7/10) 76 (4123/5437) 3806 1.08

Jack Harbour village

 An. farauti Unfed female 368 18 (4/22) 59 (583/987) 223 2.61

 An. farauti Blood-fed female 385 32 (7/22) 61 (172/280) 99 1.75

 An. farauti Sugar-fed female 103 23 (5/22) 71 (80/113) 30 2.64

 An. farauti Male 40 9 (2/22) 70 (21/30) 4 4.90

 Culex spp. Female Culex 71 18 (4/22) 64 (525/824) 89 5.92

 An. farauti Blood-seeking female (HLC) 407 30 (3/10) 58 (4268/7296) 2189 1.95
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also seen from previous studies in PNG, Indonesia and 
the Solomon Islands [25, 26].

Here, the sugar-fed An. farauti were predominantly 
collected in the early evening, indicating that sugar-feed-
ing is predominantly an early evening activity. This is 
similar to studies of the An. gambiae complex in Africa 

showing that sugar-feeding occurs early in the even-
ing and morning (prior to blood-feeding) [27]. Gener-
ally, sugar-fed females and males, are collected but in 
low numbers (< 8%) on the barrier screens [25, 26], but 
with a high sampling effort sufficient numbers can be 
collected.

Fig. 5 Locations of significant mosquito foci (shown in orange) in Haleta village, Central Province, Solomon Islands, collected by barrier screens 
(a unfed female An. farauti; b blood-fed female An. farauti; c sugar-fed female An. farauti; d male An. farauti; e female culicine species) and human 
landing catch (f blood-seeking female An. farauti)
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Across both villages, male An. farauti were col-
lected in more geographically focused areas. Male An. 
farauti were mostly collected on barrier screens near 
larval habitats shortly after sundown suggesting that 

emergence of males or swarming occurs in the early 
evening. This is the first indication of possible times 
and locations of An. farauti mating as swarms in this 
species have yet to be documented.

Fig. 6 Locations of significant mosquito foci (shown in orange) in Jack Harbour village, Western Province, Solomon Islands, collected by barrier 
screens (a unfed female An. farauti, b blood-fed female An. farauti, c sugar-fed female An. farauti, d male An. farauti, and e female culicine species) 
and human landing catch (f blood-seeking female An. farauti) 
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Mosquito population dynamics is strongly impacted 
by weather [27–29]. Wind, temperature and humid-
ity are major factors influencing mosquito flight [30]. 
Despite the limited range in temperature, humidity and 
wind speed recorded during the present study, signifi-
cant impacts on the densities of resting and biting An. 
farauti were found: increased densities of biting and 
resting An. farauti were associated with higher humidi-
ties and lower temperatures (within the 24–30  °C 
range). The finding that wind speeds greater than 1 
km/h can significantly reduce An. farauti flight is con-
sistent with impact of wind on other species [31] and 
suggests that reductions in exposure to biting An. far-
auti can be obtained by avoiding protected areas in the 
early evening when most An. farauti bites occur.

Data from outdoor barrier screens and indoor resting 
behaviours suggest many anophelines fly and rest pre-
dominantly within a meter of the ground [19, 25]. The 
height above the ground where An. farauti were collected 
on barrier screens suggests that An. farauti predominantly 
flies within a metre of the ground in the Solomon Islands. 
These observations are consistent with the observation 
that bites from An. farauti in Papua New Guinea were sig-
nificantly reduced even at elevations of 35 cm [32].

These data defining the heights at which An. farauti fly 
and the influence of wind on flight suggest that signifi-
cant protection from biting An. farauti can be afforded 
by two simple human behaviours: avoidance of protected 
areas in the early evening to maximise wind exposure 
(and thereby minimising mosquito bites) in the evening 

Fig. 7 Relationships between weather parameters and average total female resting An. farauti per half night with linear trendline. a Average wind 
speed and average total female resting An. farauti per half night. b Average humidity and average total female resting An. farauti per half night. c 
Average temperature and average total female resting An. farauti per half night. d Average wind speed and average total female biting An. farauti 
per half night. e Average humidity and average total female biting An. farauti per half night. f Average temperature and average total female biting 
An. farauti per half night
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before sleeping and then sleeping in elevated houses 
under a LLIN. Spatial foci of An. farauti within the village 
were clearly different from culicine species and also dif-
fered in having different peak times of activities, signify-
ing different ecological niches. The differing distributions 
of the culicines and anophelines suggests that interven-
tions for controlling these different mosquitoes may 
require different distribution strategies.

This research provides fundamental bionomic infor-
mation that can be utilised to support the optimisation 
of novel vector control tools. Attractive targeted sugar 
baits (ATSB) are an “attract and kill” strategy, where a 
highly attractive sugar lure is integrated into bait stations 
with an oral toxicant, usually garlic [33, 34]. In this study, 
foci of sugar-fed mosquitoes were mapped which could 
enable more effective placement of ATSBs. Insecticide 
treatment of barrier screens are an unproven technology 
that has the potential to kill mosquitoes who contact the 
screens, and warrants further research as a possible vec-
tor control tool.

Conclusions
Anopheles farauti subpopulations, as defined by physi-
ological state and sex, were found to be heterogeneously 
distributed in Solomon Island villages. This heterogeneity 
is proposed to be a function of proximity to blood and 
sugar sources, as well as resting and oviposition sites with 
the density of mosquitoes at any given location moder-
ated by weather parameters (temperature, humidity and 
wind). Understanding the basis for mosquito heteroge-
neities in villages will lead to more accurate surveillance 
of mosquitoes and greater efficiency and effectiveness 
of vector control tools. In the absence of new control 
tools, there are simple measures that individuals can take 
to protect themselves from mosquito bites based on an 
understanding of the factors that determine the distribu-
tions and densities of biting mosquitoes.
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